REGROUP: A Robot-Centric Group Detection and Tracking System

Angelique Taylor
Computer Science & Engineering
University of California, San Diego
amt062@eng.ucsd.edu

Laurel D. Riek
Computer Science & Engineering
University of California, San Diego
lriek@eng.ucsd.edu

Abstract—To facilitate HRI's transition from dyadic to group interaction, new methods are needed for robots to sense and understand team behavior. We introduce the Robot-Centric Group Detection and Tracking System (REGROUP), a new method that enables robots to detect and track groups of people from an ego-centric perspective using a crowd-aware, tracking-by-detection approach. Our system employs a novel technique that leverages person re-identification deep learning features to address the group data association problem. REGROUP is robust to real-world vision challenges such as occlusion, camera egomotion, shadow, and varying lighting illuminations. Also, it runs in real-time on real-world data. We show that REGROUP outperformed three group detection methods by up to 40% in terms of precision and up to 18% in terms of recall. Also, we show that REGROUP's group tracking method outperformed three state-of-the-art methods by up to 66% in terms of tracking accuracy and 20% in terms of tracking precision. We plan to publicly release our system to support HRI teaming research and development. We hope this work will enable the development of robots that can more effectively locate and perceive their teammates, particularly in uncertain, unstructured environments.

Index Terms—human robot interaction, group detection, group tracking, social robot navigation, deep learning

I. INTRODUCTION

Increasingly, people expect robots to interact fluently with them in crowded, real-world settings. For example, assisting families in public places (e.g., airports and hotels [1], [2], assisting clinical teams [3], [4], or transporting people via autonomous vehicles [5], [6], [7], [8]. In these real-world settings, which have considerable uncertainty, robots need robust perception methods to accomplish their tasks safely and effectively [9], [10], [11], [12]. One key feature of these environments is that people often interact in groups, a fact which robots can leverage to interact more fluently with human teammates [13], [14], [15], [16], [17].

The field of Human-Robot Interaction (HRI) has recognized the importance of transitioning from dyadic, lab-based interactions to group-based, real-world settings teams [18], [19], [20], [21], [22]. Thus, we need new methods to support this transition. This motivates us to focus on group perception methods because they can be used to address critical problems that robots encounter in real-world group settings, for example, when robots can potentially harm people around them as a result of delays or misclassifications in their perception systems [23], [24], [25].

Prior work in vision and robotics has explored group detection from exocentric and ego-centric sensing perspectives [26]. Methods that employ exocentric sensing rely on stationary, overhead cameras [27], [28]. These methods represent pedestrians as points on the ground plane to build models that learn trajectory patterns. They then employ probabilistic methods [29], [30], [31], [32], graph-based approaches [33], [34], [35], or social force models [36], [37], [38] to detect groups. However, these methods are less helpful for real-world HRI group applications, as they require placing external sensors in the environment.

Instead, methods that rely on ego-centric sensors tend to be more useful. Here, sensors are placed on a robot (or person), and various methods that generate pedestrian detections [39], [40], [41]. However, most prior work does not consider the social dynamics in the environment; doing so could enable more socially-aware navigation. A key difference ego-centric approaches is that they employ ego-centric image feature extraction techniques to model a pedestrian’s appearance, which is particularly useful for mobile robotic applications.

There are several common ego-centric perception methods, including probabilistic methods such as Multiple Hypothesis Tracking (MHT) [32], [33], [42], fluid dynamics-inspired models [35], and clustering [46], [47]. However, we focus on commonly used methods such as MHT and clustering.

One example of an HRI system that uses MHT for ego-
We employ motion and appearance distance metrics to track with a person re-identification CNN for group data association. REGROUP uses a tracking-by-detection approach inspired by Robot-Centric Group Estimation Model (RoboGEM) and leads to degrading performance. Additionally, MHT is computationally expensive because it uses tree-based data structures that grow exponentially with the number of pedestrians. Other methods use clustering to predict moving pedestrians in crowds by estimating clusters in 3D point clouds. However, the authors employed a static sensor setup; this method may fail when employed on mobile robot as mobility can increase noise in the point cloud.

There are three major limitations in prior group detection methods which require further investigation. First, most prior work relies on stationary, exocentric, overhead sensor setups which cannot be accessed by mobile robots working in new environments. Second, many existing techniques require a priori knowledge of groups, and need to be trained from large datasets that must be manually annotated. Third, public spaces are often crowded, which causes error propagation over time in modern tracking systems (for pedestrians and groups) and leads to degrading performance.

The goal of the data association problem is to match objects from one timestep to the next. Many methods employ Convolutional Neural Network (CNN) appearance descriptors for data association between pedestrians. Person re-identification CNNs are commonly used to generate such appearance descriptors as they are invariant to changes in scale, rotation, and lighting. However, there is a lack of work that explores this approach for tracking groups.

To address these gaps, we introduce the Robot-Centric Group Detection and Tracking System (REGROUP), an egocentric group detection and tracking system. REGROUP uses a tracking-by-detection approach with a person re-identification CNN for group data association. We employ motion and appearance distance metrics to track group states over time. Additionally, we propose a effective technique that detects when the environment is crowded, to enable REGROUP to handle high levels of occlusion in real-world environments. Furthermore, REGROUP runs at 45.3 frames-per-second on a real-world dataset.

The contributions of this paper are as follows:
1) We introduce a new egocentric group detection and tracking system using a crowd-aware, tracking-by-detection technique. Our system leverages person re-identification deep learning feature activation maps to address the group data association problem. We show that REGROUP is robust to real-world vision challenges such as occlusion, camera egomotion, and shadow.
2) We show that it runs in real-time on real-world data.
3) We show that REGROUP outperforms three state-of-the-art group detection and tracking methods.
4) We plan to publicly release our system to enable robotics researchers to design intelligent systems for group HRI.

Our work addresses the problem of group detection and tracking, which is essential for robots to effectively team with multiple collocated people. Our work also propels exploration in the broader robotics community to advance research in areas including autonomous vehicles and multi-robot systems.

II. REGROUP

REGROUP is an egocentric group detection and tracking system that runs on RGB video data, in real-time. It runs online using an RGB camera or offline with pedestrian detections pre-computed and stored in memory. We define groups as people spatially close to each other with a common motion goal. We capture this intuition in our group detection algorithm using three distance metrics designed particularly for egocentric perception. Also, we present a crowd indication feature (CIF) which enables robots to track in crowded environments.

Figure 2 shows an overview of REGROUP. Starting with a RGB video, REGROUP detects pedestrians, extracts their pedestrian patches, and passes those patches to a Convolutional Neural Network (CNN). The CNN generates an appearance descriptor which is used for data association of pedestrians and groups. Then, REGROUP uses these appearance descriptors to track pedestrians. Next, it detects groups using our novel crowd indication feature (CIF), which enables REGROUP to handle high levels of occlusion.

![Image](image_url)

Fig. 2: Given video data, REGROUP extracts pedestrian patches and extracts appearance descriptors from them using a CNN. Then, it uses these descriptors to track pedestrians. REGROUP detects detector using the pedestrian tracks followed by tracking groups using our novel crowd indication feature (CIF), which enables REGROUP to handle high levels of occlusion.
descriptors, and tracks groups using Kalman filtering. In this section, we discuss each of these steps in detail.

A. Ego-centric Group Detection

We introduce a new ego-centric group detection algorithm that has three main steps. First, it employs a state-of-the-art pedestrian detection method \[^{57}\] that achieves real-time performance on a GPU. This method outputs bounding boxes (BB) that are parameterized by \((x, y, w, h)\) which are the center column, center row, width, and height respectively. Second, we employ the pedestrian tracking method by \[^{58}\] that achieves real-time performance. Algorithm 1 shows our ego-centric group detection method. Consider a scenario in which pedestrian \(i\), \(p^i\) and pedestrian \(j\), \(p^j\), have bounding boxes \(b^i\) and \(b^j\) \((i \neq j)\), respectively.

We conducted iterative experiments to explore distance metrics for the ego-centric group detection problem. We started with the metrics employed in RoboGEM \[^{47}\]. Then, we expanded them to explore other distance metrics using the pedestrian BBs. We made several observations such as pedestrians that are nearby tend to have larger visual representations than people far away. We found that the combination of “inner distance” between pedestrians, the distance between pedestrians’ lower body (e.g., indicating the ground plane), and the ratio of the height of two adjacent pedestrians generated the best performance of all approaches we tested.

We generate three \(N_i \times N_i\) adjacency matrices (AM) for the width \(D_w\) between \(b^i\) and \(b^j\), height ratio \(D_h\) between \(b^i\) and \(b^j\), and ground plane distance \(D_{gp}\) between \(b^i\) and \(b^j\), where \(N_i\) is the number of pedestrians at time \(t\) (See Figure 3). The adjacency matrix captures different distance metrics between pedestrians in the scene. We define \(D_w\) as the inner distance between \(b^i\) and \(b^j\) which groups pedestrians with a small space between them. \(D_h\) measures how close the height of \(b^i\) matches \(b^j\) which groups pedestrians that are close to the robot together and it groups those that are far away from the robot together. Finally, \(D_{gp}\) measures the ground plane distance between \(b^i\) and \(b^j\) which groups pedestrians based on how close they are walking near each other.

The AMs capture whether \(p^i\) and \(p^j\) are in the same group. We apply numerical thresholds \(\beta\), \(\alpha\), and \(\kappa\) to \(D_w\), \(D_h\), and \(D_{gp}\) respectively such that we exclude group candidates that clusters pedestrians that are not physically close to each other. \(\beta\) is the mean of \(b^i_w\) and \(b^j_w\), \(\alpha \in [0,1]\) is the height ratio between \(b^i_h\) and \(b^j_h\), and \(\kappa \in [1, I_h]\) is the ground plane distance (in pixels) between \(b^i\) and \(b^j\) where \(I_h\) is the image height.

Next, we normalize \(D_w\), \(D_h\), and \(D_{gp}\); therefore, a value of 1 would indicate a group candidate and a value of 0 means that \(b^i\) and \(b^j\) are not in a group. REGROUP combines all the metrics into a single matrix \(D\) (Hadamard product) with group candidates. By detecting cycles in the adjacency matrix, we can find connections between people i.e., groups. Then, we employ Depth First Search to detect cycles in an adjacency matrix as commonly done \[^{54}\]. Thus, potential groups detections \(G \in \mathbb{R}^{1 \times N_i}\) are defined as pedestrians within a cycle and assigned a cluster ID.

B. State Estimation

We consider the group tracking problem for a mobile robot that works in real-world environments to support teams which requires robots to track their teammates from both a stationary and mobile platform. Recent work using Kalman Filters (KF) shows great promise to predict pedestrian states under high egomotion \[^{59}\]. It models dynamics and uncertainty in learned latent space and performs long-term forecasting \[^{60}, [61]\]. While prior work shows that KFs achieve good tracking performance of pedestrians, there’s a lack of work that employs KFs for groups. We adopt the track handling and KF mechanism from \[^{58}\] for pedestrians and build on it to track groups. We assume that no camera calibration or egomotion information is available and the robot must detect and track groups solely from its onboard sensor (i.e., RGB).

In preliminary experiments, we found that a constant velocity model and linear observation model achieved better group
tracking performance than the comparative tracking methods. Thus, we employ these models in our work. States are updated using a linear velocity model when no detection is assigned to a track. The track state is updated using the BB detection.

We represent pedestrian tracks \(k \in K \) with an eight-dimensional state space \((p^k_x, p^k_y, p^k_h, p^k_v, p^k_{x}, p^k_{y}, p^k_{h}, p^k_{v}) \) which is the \(x, y \), aspect ratio, height, and their respective velocities. Pedestrian and group tracks are initiated when they are observed for three consecutive image frames. We introduce a new technique which stores a pedestrian’s group track ID history in \(p_{\text{hist}} = \{ h_t | t = -1, -2, \ldots, -T \} \) to be used for crowd handling where \(T \) is the window size (See [1-6]). When tracks are not observed for \(A_{\text{max}} \) frames they are removed from track history. We use \(A_{\text{max}} = 100 \) which achieved good performance in empirical experiments. Tracks that are successfully associated for the first three frames continue to be tracked until they exit the frame.

We employ the Hungarian algorithm (HA) to solve the assignment problem for groups, as commonly done in multiple object tracking (MOT) [38, 49, 67]. We define \(c \) as a metric which incorporates two distance metrics into the HA to represent motion and appearance (see Eq. \(2 \) from [38]). The motion metric, \(m \), which is standard in KF, tracks the state of a group’s position on the image plane over time and generally performs well when egomotion uncertainty is low (i.e., a stationary sensor). The appearance metric \(a \) computes the cosine distance between appearance descriptors of group detections \(u \) and group tracks \(v \) that are generated from a person re-identification CNN (see [11-14]). We use parameter \(\lambda \in [0, 1] \) which is the fraction of detections that have been matched to group tracks using the appearance metric \(a \). Next, we employ an indicator function \(c_{\text{ind}} \) which finds tracks admissible when they are within the gating region of both the appearance metric \(a_{\text{ind}} \) and motion metric \(m_{\text{ind}} \) (see Eqs. \(3 \) and \(4 \)). In practice, REGROUP associates tracks using \(a \) and matches the remaining tracks using \(m \).

\[
\begin{align*}
c(u, v) & \leftarrow (1 - \lambda)m(u, v) + \lambda a(u, v) \quad (2) \\
c_{\text{ind}}(u, v) & \leftarrow m_{\text{ind}}(u, v) \times a_{\text{ind}}(u, v) \quad (3) \\
m_{\text{ind}}, a_{\text{ind}} & \leftarrow \begin{cases} 1, & \text{if } u \text{ and } v \text{ in the same gating region} \\ 0, & \text{otherwise} \end{cases} \quad (4)
\end{align*}
\]

We define the bounding box coordinates of group detection \(u \) as \(b_u = (x, y, \gamma, h) \) which are the \((x, y) \) coordinates representing the center of the bounding box, aspect ratio, and height respectively. Also, we define \(y_u \) as the track distribution which is a vector of the mean values of the bounding box coordinates for group track \(v \). To compute the motion metric \(m \), we use the squared Mahalanobis distance between new group detections \(b_h \) and \(y_v \) with inverse covariance \(S_v^{-1} \). The benefit of using Mahalanobis distance is that it computes the \(z - \text{score} \) statistic, which standardizes the distribution to a mean of 0 and a standard deviation of 1 (See Eq. \(5 \) from [38]). Thus, this property makes it easy to compare the distance from one distribution to another and it captures motion characteristics of groups. \(m \) follows the \(\chi^2 \) distribution with four degrees of freedom (Recall: observation model uses bounding boxes coordinates \((x, y, \gamma, h) \) with a critical value of 0.05. Thus, we apply an indicator function \(m_{\text{ind}} \) to \(m \) which assigns detections to tracks by thresholding the Mahalanobis distance at 95% confidence interval computed from inverse \(\chi^2 \) distribution which results in \(\tau(1) = 9.4877 \).

\[
\begin{align*}
m(u, v) & \leftarrow (b_v - y_v)^T S_v^{-1} (b_v - y_v) \quad (5) \\
m_{\text{ind}}(u, v) & \leftarrow 1[m(u, v) \leq \tau(1)] \quad (6)
\end{align*}
\]

We define the appearance descriptor of pedestrian detection \(l \) as \(\text{ap}_l \) where \(||\text{ap}_l|| = 1 \) which is the Euclidean norm of the feature vector generated by the CNN defined in Section 3.4. We collect a gallery of appearance descriptors for pedestrians which we defined as \(\text{AP}_k = \{ \text{ap}_k^i | i = 1, \ldots, A_k \} \) where \(A_k \) is the number of appearance descriptors for the pedestrian track \(k \). Also, we introduce a new appearance descriptor \(a_{\text{ind}} \) as the descriptor for group detection \(u \) where \(||a_{\text{ap}}|| = 1 \) which is the Euclidean norm generated by combining the appearance descriptors of pedestrians \(\text{ap}_l \) in \(u \) (See Eq. \(4 \)). We collect a gallery of appearance descriptors for groups which we defined as \(\text{AG}_v = \{ a_{\text{ap}}^i | i = 1, \ldots, A_v \} \) where \(A_v \) is the number of appearance descriptors for group track \(v \).

\[
a_{\text{ap}} \leftarrow \sum_{l=1}^{N_t} \text{ap}_l \quad (7)
\]

To account for camera motion, we use an appearance distance metric \(a \) which performs well when egomotion uncertainty is high, such as in mobile robotics applications. First, REGROUP matches pedestrian detection \(l \) to pedestrian track \(k \) using the cosine distance between their respective appearance descriptors, denoted \(a^* \) (See Eq. \(8 \)). This metric keeps track of how a pedestrian’s appearance changes over time, even after long moments of occlusion, which is useful for recovering tracks when camera motion is dynamic. Then, the system performs a new technique for group data association. It combines the appearance descriptors on pedestrian tracks within group tracks to generate the appearance descriptor of group tracks \(a_{\text{ap}} \) (See Eq. \(5 \)).

\[
a^* \leftarrow \arg\min_{i} \{ 1 - \text{ap}_l^T \text{ap}_k^i | \text{ap}_k^i \in \text{AP}_k \} \quad (8)
\]
representations to characterize the appearance and spatial
of people over time. For instance, \cite{63} uses multi-grain object
D. Deep Appearance Descriptors for Group Data Association
of frequently seen group track IDs. We found that a window size
to update group states with a window size
the scene is crowded, we use the past group track history
This is likely the result of possible combinations of the number
5.3.1), we found that
conducting experiments with our ego-centric dataset (See Section
the number of people which constitute a crowd. When con-
adjacency matrix. Next, we run depth first search (DFS) on
scene is crowded (See
Indication Feature (CIF)
tracks over time. To mitigate this, we introduce a Crowd
situation, we can leverage past track states to preserve group
because the ego-centric distance metrics (i.e.,
MC is used to solve the measurement-to-track associations
technique \cite{58} to solve the measurement-to-track associations
for pedestrians. MC is used to solve the measurement-to-track
as defined in Equ. \cite{2} and \cite{3}. Then, it solves the linear assignment problem by iterating
over the most recent tracks to least recent tracks followed by
solving for and updating the matched and unmatched tracks.
We conducted all of our experiments on a Dell Inspiron Intel
Core i7 laptop, with 16GB RAM, 1TB HDD, and NVIDIA
GeForce GTX960M GPU. The machine ran Ubuntu 16.04.
We implemented our framework in Python using Tensorflow.

III. EXPERIMENTS

A. Dataset Acquisition
To evaluate REGROUP, we required an ego-centric video
dataset captured from a mobile robot in a real-world environ-
Fig. 5: Group detection performance. Precision (left) and recall (right) measured over IoU threshold (higher is better).

\section*{C. Comparison to State-of-the-Art}

We seek to compare REGROUP to state-of-the-art methods and investigate how well our system performs in terms of group detection and group tracking. To facilitate this, we follow evaluation procedures from \cite{54} which employs similar metrics such as precision and recall in terms of group detection performance. Additionally, we follow the tracking evaluation procedures from \cite{71,72,40} which employ metrics to demonstrate our system’s ability to track groups long-term. While group detection metrics indicate the performance on a frame-by-frame basis, the group tracking metrics indicate how well the group tracking methods perform long-term.

We tested the group detection and tracking methods independently to evaluate their performance on our challenging dataset. Furthermore, we conducted ablation studies across all methods to evaluate the effectiveness of these methods when different group detection and tracking methods are combined.

1) Group Detection. We compared REGROUP’s group detection method against three group detection methods:

- \textbf{Normalized Cuts (NCuts)} \cite{73} group pedestrians based on proximity until it reaches \(K \) partitions (denoted NCuts+K). We used an off-the-shelf implementation from \cite{73}. We conducted empirical experiments and found that NCuts+K perform best with \(K = 2 \), so we report those results.

- \textbf{Self-Tuning Spectral Clustering (Self-Tuning-SC)} builds \(K \) group pedestrians based on \(K \) group detections. We followed the method presented in \cite{74}.

- \textbf{Spencer Group Detector} detects groups using social relation features of pedestrians including position, speed, and direction of motion. Then, it trains a Support Vector Machine (SVM) to perform binary classification to detect if two pedestrians are in a group. We created our own implementation following the method presented in \cite{52}.

- \textbf{RoboGEM Group Detector} \cite{75} clusters pedestrians into groups using agglomerative hierarchical clustering \cite{47, 75}.

\section*{B. Experimental Metrics}

We evaluate REGROUP using the widely used standard classification of events, activities, and relationships (CLEAR)

\begin{itemize}
 \item Multiple Object Tracking Accuracy (MOTA \(\uparrow \)): combines false positives, false negatives, and ID switches.
 \item Multiple Object Tracking Precision (MOTP \(\uparrow \)): misalignment in BBs between ground truth and predicted tracks.
 \item Mostly Tracked Targets (MT \(\uparrow \)): number of ground truth BBs covered by a track hypothesis at least 80\% of time.
 \item Mostly Lost Targets (ML \(\downarrow \)): number of ground truth BBs covered by track hypothesis for at most 20\% of time.
 \item False Positives (FP \(\downarrow \)): number of false positives in BBs.
 \item False Negatives (FN \(\downarrow \)): number of false negatives in BBs.
 \item Total Number of ID Switches in BBs (IDsw \(\downarrow \)).
 \item Runtime (t(s) \(\downarrow \)): total time to run a system.
\end{itemize}

\footnote{For many of these methods, they either did not have publicly available code or had implementations we could not get to work. However, we spent months carefully following the methods presented in the papers to ensure a fair comparison.}

We compared REGROUP’s group detection and tracking methods to three existing popular benchmarks in computer vision (e.g. COCO dataset \cite{69, 70}). Thus, two of our team members labeled 3,000 randomly sampled batches of images for label validation.

The location contained crowds, as well as shaded and open areas. The collection site contains several key computer vision challenges including indoor and outdoor observations, varying lighting conditions, and different degrees of crowdedness.

The total dataset contained 28,094 RGB-D images which we split into training (12,000), validation (6,000), and testing (6,000) sets. The entire dataset contains 8118 unique pedestrians and 52 unique group tracks.

In order to generate group track IDs and bounding boxes, we adopted the definition of groups from \cite{54}. Three members from our team labeled our data using Image Labeler, a built-in MATLAB 2017b application. We validated our labels in a manner consistent with other popular benchmarks in computer vision (e.g. COCO dataset \cite{69, 70}). Thus, two of our team members labeled 3,000 randomly sampled batches of images for label validation. We use Intersection-over-Union (IoU) \(\uparrow \) to evaluate the quality of our labels. Our validation procedure resulted in precision of 78.2 and recall of 71.5 with an IoU of 0.5 which is comparable to COCO’s expert annotators.

\section*{C. Comparison to State-of-the-Art}

We seek to compare REGROUP to state-of-the-art methods and investigate how well our system performs in terms of group detection and group tracking. To facilitate this, we follow evaluation procedures from \cite{54} which employs similar metrics such as precision and recall in terms of group detection performance. Additionally, we follow the tracking evaluation procedures from \cite{71, 72, 40} which employ metrics to demonstrate our system’s ability to track groups long-term. While group detection metrics indicate the performance on a frame-by-frame basis, the group tracking metrics indicate how well the group tracking methods perform long-term.

We tested the group detection and tracking methods independently to evaluate their performance on our challenging dataset. Furthermore, we conducted ablation studies across all methods to evaluate the effectiveness of these methods when different group detection and tracking methods are combined.

1) Group Detection. We compared REGROUP’s group detection method against three group detection methods:

- \textbf{Normalized Cuts (NCuts)} \cite{73} group pedestrians based on proximity until it reaches \(K \) partitions (denoted NCuts+K). We used an off-the-shelf implementation from \cite{73}. We conducted empirical experiments and found that NCuts+K perform best with \(K = 2 \), so we report those results.

- \textbf{Self-Tuning Spectral Clustering (Self-Tuning-SC)} builds \(K \) group pedestrians based on \(K \) group detections. We followed the method presented in \cite{74}.

- \textbf{Spencer Group Detector} detects groups using social relation features of pedestrians including position, speed, and direction of motion. Then, it trains a Support Vector Machine (SVM) to perform binary classification to detect if two pedestrians are in a group. We created our own implementation following the method presented in \cite{52}.

- \textbf{RoboGEM Group Detector} \cite{75} clusters pedestrians into groups using agglomerative hierarchical clustering \cite{47, 75}.

\section*{B. Experimental Metrics}

We evaluate REGROUP using the widely used standard classification of events, activities, and relationships (CLEAR)

\begin{itemize}
 \item Multiple Object Tracking Accuracy (MOTA \(\uparrow \)): combines false positives, false negatives, and ID switches.
 \item Multiple Object Tracking Precision (MOTP \(\uparrow \)): misalignment in BBs between ground truth and predicted tracks.
 \item Mostly Tracked Targets (MT \(\uparrow \)): number of ground truth BBs covered by a track hypothesis at least 80\% of time.
 \item Mostly Lost Targets (ML \(\downarrow \)): number of ground truth BBs covered by track hypothesis for at most 20\% of time.
 \item False Positives (FP \(\downarrow \)): number of false positives in BBs.
 \item False Negatives (FN \(\downarrow \)): number of false negatives in BBs.
 \item Total Number of ID Switches in BBs (IDsw \(\downarrow \)).
 \item Runtime (t(s) \(\downarrow \)): total time to run a system.
\end{itemize}

\footnote{For many of these methods, they either did not have publicly available code or had implementations we could not get to work. However, we spent months carefully following the methods presented in the papers to ensure a fair comparison.}
with features such as pedestrian position, velocity, orientation, and distance from the robot to people in the environment.

2) Group Tracking. We compared REGROUP’s group tracking method against three group tracking methods:

Group-LSTM segments pedestrians by clustering trajectories of individuals that have similar motion trends. It tracks groups using an Long-Short Term Memory Recurrent Neural Network to predict the motion of the pedestrians. We used an off-the-shelf implementation by [54].

Group-LSTM-Obst builds on Group-LSTM by predicting the future motion trajectory of pedestrians after n timesteps (n > 1) by leveraging grouping behaviors and obstacles in the environment. Group-LSTM-Obst leverages the layout of the environment to predict the trajectory of groups over time. We used an off-the-shelf implementation by [55].

Spencer’s Group Tracker uses a Multi-Hypothesis Tracker to track groups over time from an ego-centric perspective. We used an off-the-shelf implementation by [56].

We conducted ablation experiments to understand how different group detection methods impact the performance of the group tracking methods. Here, we explored the combination of the group tracking methods, including Group-LSTM [55]. Group-LSTM-Obst [56], and REGROUP with the group detection methods including NCuts+K [72], Spencer [54], Self-Tuning-SC [74], and REGROUP’s group detector.

IV. RESULTS

A. Group Detection

Figure [5] shows the overall group detection results. Overall, REGROUP outperformed all other methods by up to 40% in terms of precision and up to 18% in terms of recall. Self-Tuning-SC outperformed Spencer, and Spencer outperformed NCuts+K in terms of precision. Spencer outperformed NCuts+K and Self-Tuning-SC in terms of recall. For $\text{IoU} < 0.5$, NCuts+K outperformed Self-Tuning-SC, but for $\text{IoU} \geq 0.6$, Self-Tuning-SC performed better than NCuts+K. REGROUP’s detector outperforms RoboGEM’s detector in terms of precision by up to 30% and recall by up to 18%.

B. Group Tracking

Table [1] shows the group tracking results. Overall, REGROUP outperformed all other methods by up to 66% in terms of MOTA and 20% in terms of MOTP.

Group-LSTM Tracking Table [1] shows the Group-LSTM ablation results. Overall performance of Group-LSTM improves using REGROUP’s group detection method in terms of precision, recall, MT, ML, and FN, MOTA, and MOTP. Also, the performance declines using the Self-Tuning-SC group detection method in terms of across all metrics except FP. The performance declines further using the Spencer group detection method in terms of precision, FP, IDsw, and MOTA; although it achieves better performance than NCuts+K and Self-Tuning-SC in terms of recall, MT, ML, and MOTP. Lastly, the performance of Group-LSTM using NCuts+K achieves the poorest performance of all group detection methods. In terms of runtime, the Group-LSTM tracker achieves the shortest total runtime using REGROUP’s group detector, and the longest runtime using the Spencer group detector.

Group-LSTM-Obst Tracking Table [1] shows the Group-LSTM-Obst results. Overall performance of Group-LSTM-Obst improves using REGROUP’s group detection method in terms of precision, recall, MT, ML, FN, MOTA, and MOTP. The performance of Group-LSTM-Obst declines using Self-Tuning-SC in terms of all metrics except FP. Also, the performance declines using Spencer group detection method in terms of precision, FP, IDsw, and MOTA; although, the performance improves in terms of recall, MT, FN, and MOTP compared to NCuts+K and Self-Tuning-SC methods. The performance of Group-LSTM-Obst declines most using NCuts+K. In terms of precision, recall, MT, ML, and FN, MOTA, and MOTP.
REGROUP achieves the best group detection performance in terms of all metrics except FP and IDsw. The performance of Spencer declines using Self-Tuning-SC and Spencer group detectors in terms of all metrics except FP and IDsw. Also, the performance declines using NCuts+K group detection method in terms of precision, recall, MT, ML, FN, MOTA, and MOTP; although, the performance improves in terms of recall, FN, and MOTP compared to the Self-Tuning-SC method. In terms of runtime, Spencer achieves the shortest total runtime using REGROUP’s group detector.

Spencer Tracking Table I shows the Spencer ablation results. Overall performance of Spencer improves using REGROUP’s group detection method in terms of precision, recall, MT, ML, FN, MOTA, and MOTP. The performance of Spencer declines using Self-Tuning-SC and Spencer group detectors in terms of all metrics except FP and IDsw. Also, the performance declines using NCuts+K group detection method in terms of precision, recall, MT, ML, FP, IDsw, MOTA, and MOTP; although, the performance improves in terms of recall, FN, and MOTP compared to the Self-Tuning-SC method. In terms of runtime, Spencer achieves the shortest total runtime using REGROUP’s group detector.

REGROUP Tracking Table I shows the REGROUP’s ablation results. Overall REGROUP achieved the best tracking performance when compared to Group-LSTM methods across all metrics except FP and IDsw. The performance of Spencer declines in terms of precision, MT, ML, and MOTA performance which is likely due to its poor group detection performance (See Figure 5). NCuts+K outperforms Spencer across all metrics. Lastly, our method achieves the shortest total runtime using REGROUP’s group detector.

V. DISCUSSION

In this work, we introduced REGROUP, a group detection and tracking system for mobile robots working in real-world environments. We demonstrated that deep learning appearance descriptors have the potential to address the group detection and tracking problem. Even with no a priori knowledge (i.e., for training group detectors), REGROUP outperforms Spencer, Self-Tuning-SC, NCuts+K, Group-LSTM, and Group-LSTM-Obst methods in terms of group detection and tracking on our dataset.

Our ablation studies showed how well both the group detector and tracker of REGROUP performed in comparison to the other methods. For instance, Figure 5 shows that REGROUP achieves the best group detection performance in terms of precision and recall across all methods. REGROUP’s detector also improves the performance of all other tracking methods in terms of precision, recall, MT, ML, FN, MOTA, and MOTP, including Spencer, Group-LSTM, Group-LSTM-Obst and REGROUP (See Table I). Also, Self-Tuning-SC achieves the second best performance in terms of precision, which also reflects the results of this method when combined with Group-LSTM and Group-LSTM-Obst group tracking methods. Spencer achieves the second best performance in terms of recall, MT, ML, FN, and MOTP.

As shown in Table I, Group-LSTM and Group-LSTM-Obst performance declines with MT=0 using NCuts+K and Self-Tuning-SC group detection methods. This indicates that Group-LSTM and Group-LSTM-Obst methods do not track any groups for at least 80% of the time they are observed in the scene. This is likely caused by inconsistent group detections where groups are detected in one frame and not the next frame which results in generating a new group track ID even when groups are detected in the future. As a consequence, Group-LSTM methods often swapped IDs between groups.

All tracking methods achieve the shortest runtime using REGROUP’s group detector. As aforementioned, REGROUP achieves the best performance of all group tracking methods. This shows that REGROUP is beneficial because it achieves a shorter runtime without sacrificing precision, recall, or MOTA.

Our group tracking approach is beneficial to HRI in several ways. First, REGROUP is able to track groups in real-world, human-centered environments where people are moving and the robot is moving, a well-known problem in robotics. Second, it uses group data association that leverages deep learning features, which enable robots to leverage appearance features when egomotion uncertainty is high. Third, REGROUP can enable navigation systems operating in human-centered environments to engage in more socially aware interaction with human groups.

In the future, we plan to continue building on REGROUP to reach our goal of designing robots that safely and fluently work in human-robot teaming situations. There are many exciting domains to deploy REGROUP, such as in retail settings, work sites, and in hospitals, to support teams. We are particularly interested in deploying REGROUP in conjunction with navigation systems to enable robots to support human teams in safety critical environments. For instance, robots can use REGROUP to track healthcare workers as it works alongside them (e.g., delivering supplies, helping patients stand), and can be helpful in other teaming contexts such as manufacturing and search and rescue. Furthermore, this work is useful in other areas of robotics, such as in last-mile and personal transportation applications, where understanding what groups of people are doing can enable robots to make intelligent decisions.

To help support reproducability, code for REGROUP can be found at: https://github.com/UCSD-RHC-Lab/regroup-public.

We hope this work will prove useful for the HRI community, as it contributes a new system to investigate how groups move throughout an environment and it can enable robots to seamlessly work in human-robot teaming situations.