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Robot-Centric Perception of Human Groups
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The robotics community continually strives to create robots that are deployable in real-world environments. Often, robots
are expected to interact with human groups. To achieve this goal, we introduce a new method, the Robot-Centric Group
Estimation Model (RoboGEM), which enables robots to detect groups of people. Much of the work reported in the literature
focuses on dyadic interactions, leaving a gap in our understanding of how to build robots that can effectively team with larger
groups of people. Moreover, many current methods rely on exocentric vision, where cameras and sensors are placed externally
in the environment, rather than onboard the robot. Consequently, these methods are impractical for robots in unstructured,
human-centric environments, which are novel and unpredictable. Furthermore, the majority of work on group perception is
supervised, which can inhibit performance in real-world settings. RoboGEM addresses these gaps by being able to predict
social groups solely from an egocentric perspective using RGB-D data. To achieve group predictions, RoboGEM leverages joint
motion and proximity estimations. We evaluated RoboGEM against a challenging, egocentric, real-world dataset where both
pedestrians and the robot are in motion simultaneously, and show RoboGEM outperformed two state-of-the-art supervised
methods in detection accuracy by up to 30%, with a lower miss rate. Our work will be helpful to the robotics community,
and serve as a milestone to building unsupervised systems that will enable robots to work with human groups in real-world
environments.

1 INTRODUCTION
Since its inception, the human-robot interaction (HRI) community has strived to design robots for real-world
environments [55, 107, 114, 125, 130]. For example, robots are being used to motivate older adults to exercise
to improve their health, assist clinicians with daily tasks, support workers in manufacturing, and help people
navigate in airports [1, 28, 54, 54, 72, 79, 108, 115, 127, 132]. In these environments, robots are often tasked with
interacting with groups of people. Thus, it is important that robots have an adequate understanding of social
groups [22, 30, 44, 59, 61, 62, 66, 77, 79, 83, 84, 90, 96, 130, 133, 134].
Much prior work focuses on dyadic interaction (i.e., one human and one robot), in controlled environments

that do not represent real-world conditions [51, 125]. Additionally, many methods are designed for surveillance
applications, which rely on cameras placed externally in the environment. However these methods can be
impractical or unfeasible, because mobile robots can often be tasked to operate in unstructured environments
where they must rely solely on their onboard sensors. Moreover, exo-centric group detection and tracking
methods in robotics applications can raise significant privacy concerns [16, 17, 67, 88, 102].

While nascent, there is a growing body of literature on group perception methods in HRI [75, 76, 83, 84, 86, 129,
130, 133, 134]. However, many of these approaches rely on supervised learning, which requires training models
on large datasets [75, 76, 83, 84, 86]. There are a few ego-centric group detection methods that are unsupervised
(c.f. [23]), though the methods are deployed from a stationary sensor. Thus, this warrants exploration into
unsupervised group detection methods for mobile robots.
To address these gaps, we introduce a new method, the Robot-Centric Group Estimation Model (RoboGEM),

which enables robots to detect human groups in real-world environments from an egocentric perspective using
unsupervised learning. RoboGEM works by first estimating human velocity using dense optical flow vectors.
Next, it estimates pairwise proximity between people using a pedestrian detector. Then, it combines these models
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Fig. 1. This paper introduces RoboGEM, an ego-centric, unsupervised, group perception method. This figure demonstrates
RoboGEM detecting groups while both the robot and pedestrians in the environment are in motion.

to compute features using joint proximity and motion predictions. Finally, it uses these features to perform
hierarchical clustering analysis to detect groups.
Our approach is beneficial in several ways. First, it can be used in group tracking pipelines to improve their

performance. Unlike previous approaches in the literature that only work in controlled environments and employ
stationary cameras, our method is designed for ego-centric, RGB-D perception, encompassing the challenging
problem of moving people from a mobile platform [65, 85, 137]. We collected an RGB-D dataset that was recorded
in a crowded, sunny, outdoor environment which caused many computer vision challenges such as occlusion,
shadow, and varying lighting illuminations. Thus, our approach was designed for real-world situations, using
real-world data; therefore, robots using our method will well-equipped to handle everyday challenges.
The main contributions of our work are threefold. First, we present RoboGEM, a novel unsupervised, ego-

centric group detection algorithm. It is straightforward to implement and can be used across many human-robot
teaming scenarios. Second, our evaluation addresses an important problem in robotics, which is solving vision
tasks while both the robot and pedestrians are in motion, across a challenging, real-world dataset. Third, we show
that RoboGEM outperforms two top-performing algorithms by up to 30% in terms of accuracy (See Section 4.4).
This work addresses an imperative need in HRI, which will contribute to our goal of enabling robots to seamlessly
integrate themselves in human-centered environments. Furthermore, our work will be helpful to the robotics
community as it will promote further exploration of human-robot teamwork in real-world settings.

2 RELATED WORK
In order to perform human group detection, we must first be able to detect pedestrians. Thus, we first highlight
trends in pedestrian detection and discuss how those methods led to advances in egocentric perception. Then,
we discuss the current state-of-the-art group-related problems in the literature which include: group dynamics,
spatial behavior, and group detection (i.e., group prediction) and tracking (i.e., group identification) in HRI, as
these are closely related to our work.
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2.1 Pedestrian Detection
The objective of pedestrian detection is to locate people in images or consecutive frames in video streams, where
the output is typically represented in the form of bounding boxes. Pedestrian detection is an important area
of research for robotics and computer vision, with applications in surveillance, activity recognition, and video
analysis [31, 36, 145, 145].

Past research on pedestrian detection includes approaches using either stationary or mobile sensors. Pedestrian
detection from stationary cameras are typically placed overhead, where people are monitored over time [138].
Before depth sensors became prevalent in robotics, RGB images were predominantly used to detect people.
Most prior approaches use features such as Histogram of Oriented Gradients (HOG) [31] or background

subtraction to narrow down the search space to find people in images [100]. Deformable part models is another
popular technique that uses HOG to detect different parts of the body and is used to train classifiers for pedestrian
detection [38]. Also, due to the complex geometry of the human body, other features such as color, shape, and
motion are used as well. In the final stage of detection, a classifier, such as a Support Vector Machine (SVM), is
used to make a decision about whether or not the image contains one or more pedestrians [83].
In robotics, sensors in addition to traditional RGB monocular cameras are often used to detect people. For

example, Arras et al. [7] used a laser range finder to detect and track people’s legs using a Kalman-Filter based
multi-target tracking system. Jafari et al. [63] used head-mounted RGB-D sensors in a multi-hypothesis tracking
system to detect and track upper bodies. They used a normalized depth-based template approach to detect upper
bodies and groundHOG to detect people from far ranges [124]. Spinello et al. [122] detected full bodies in RGB-D
data using a HOG-inspired feature, Histogram of Oriented Depths.
Recently, researchers have become interested in pedestrian detection from an egocentric perspective [14, 94,

112, 113]. Egocentric vision aims to solve perception problems from the first-person viewpoint. Applications
include activity recognition, video summarization, and mapping [13, 15, 97, 112, 113]. Data is usually collected
from head-mounted sensors or cameras that are mounted on mobile platforms.
Many of the aforementioned techniques have also been used for egocentric vision. However, because both

the sensor and people are in motion, it is challenging to determine whether a pedestrian’s change in position is
a result of the sensor’s motion or people moving in the environment. Thus, a motion model that describes the
robot’s own movements is typically used to differentiate robot from human motion [15, 94].
Egocentric vision is particularly important as robots begin entering complex human environments. It is not

feasible for robots to depend on overhead cameras as a means of monitoring the robot’s environment or as an
extension to its vision system. Additionally, robots will encounter new situations and must be able to handle
conditions with no a priori knowledge; therefore, they require unsupervised methods so that they can learn solely
on input data.

In recent years, the computer vision community has transitioned from using hand-crafted appearance features
(e.g. HOG, Haar, LBP) to using deep learning (DL) architectures to generate features for pedestrian detection.
These DL architectures use Convolutional Neural Networks (CNNs) which typically consists of passing images
through a series of filters such as convolution, non-linear, pooling (downsample or max pooling), rectified linear
units or ReLU (normalization), and fully connected layers. The fully connected layer generates a fixed length
vector that is used for classification. Using different configurations of such layers has enabled researchers to
improve pedestrian detection accuracy beyond what hand-crafted featured-based approaches have been able to
achieve [32, 33, 71].
There have been many approaches proposed for pedestrian detection using DL which aim to address one

or more of the following challenges: using varying input image sizes [56], using region proposals effectively
[49, 50], training on a full image versus training on object proposals [3, 6, 18, 37], and improving training and
testing time without sacrificing accuracy [49, 103–106]. Some of the most popular methods include YOLO in its
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variants [103–105], Faster RCNN [106], Spatial Pyamid Pooling networks (SSPNets) [56] and more. We use YOLO
[103–105] in our work because it achieves state-of-the-art performance and runs in real-time.

2.2 Groups in HRI
Modeling group dynamics is important for robots as they work in teams. Some problems in modeling group
dynamics include team decision making and synchrony. For instance, some researchers explored how robots can
help mitigate conflicts in teams and how a robot’s gaze influences its teammates’ perception of decision making
[65, 110]. Additionally, Correia et al. [29] explored how human group members in a two-human, two-robot group
generate their membership preferences to these robots based on the robot’s behaviors.
Synchrony is used as a way to characterize groups in order to help robots coordinate their actions with a

team. For instance, Iqbal et al. [59–62] designed algorithms that model the high level actions of a human group,
and measured the degree of synchrony in the group to enable a robot to coordinate its actions with the group.
Additionally, Lorenz et al. [85] conducted a study on movement coordination in human-robot teams, and found
that humans unintentionally coordinated their movements with robots.
Although this work serves as an important step in modeling group dynamics, they are also conducted in

well-controlled environments. This can be problematic as group behavior can be unpredictable; therefore, these
approaches may not be generalizable to real-world environments.

Another approach in the literature models group spatial behavior using two major constructs: proxemics and
F-Formations. Proxemics is the study of human use of space during face-to-face interactions [52]. It encompasses
one’s personal preferences for spatial comfort zones which range from intimate to public space. This is influenced
by people’s culture, age, and gender backgrounds [10, 52, 89, 92, 126]. F-Formations are a systematic way of
defining groups based on their sustained spatial and orientational relationship [69]. They describe how groups
self-organize themselves into three spaces: (1) o-space is the center of the group, (2) p-space is where the group
members stand, and (3) r-space is the space immediately outside of the group.
Much of the work done on HRI in groups has explored how a robot’s behavior impacts a group’s spatial

behavior. For example, Vazquez et al. [135] investigated how a robot’s role during a game impacts its human
group partner’s spatial behaviors. Vroon et al. [137] designed a reactive system that generates hypotheses for
social positioning of approach, retreat, and converse behaviors while solving a group task.

2.3 Group Spatial Behaviors
Another trending topic is the exploration of spatial behaviors in public settings for robot tour guides [46, 117].
For example, Fiore et al. [40] designed a robot that actively reacts to a group’s motion by performing stop and
wait behaviors based on the group’s needs and the urgency of the current task. Karreman et al. [68] investigated
how a tour guide robot’s orientation influenced visitors’ orientation. However, rather than determining which
people are within a group together, these robots are reactive to people in the robot’s environment.

There has also been work done that uses F-Formations to model groups. The goal of F-Formation detection is to
estimate the o-space of the group, which is the space in front of group members or in the center of the group [69].
Some work explored rotating the robot’s orientation and using motion models to determine how they impact
F-Formations [69, 73, 140]. Vazquez et al. [136] designed an F-Formation detection system that uses position and
head orientation to track the direction of people’s lower body which generates soft group assignments to track
body orientation.

While this prior work aims to model groups using F-Formations, it is challenging to detect such groups from a
mobile platform. Hence, current methods model F-Formations as free-standing groups, which can potentially fail
in cases when people are moving.
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2.4 Group Detection and Tracking
The final theme involves detection and tracking of groups and crowds [16, 23, 84, 132]. Prior work in surveillance
and robotics have explored detecting moving groups in large crowds. This problem is addressed from an exo-
centric perspective where the sensor is placed overhead. Many approaches include probabilistic methods such as
particle filters [2, 11, 12, 21, 42, 48, 93, 99, 101, 141–144], graph-based approaches such as generalized minimum
clique graphs [19, 39, 70, 81, 95, 146], clustering-based methods such as k-means and agglomerative clustering
[45, 47, 120, 121], as well as methods based on the social force model [78, 88, 119, 123].

Group detection and tracking has also been explored from an ego-centric perspective using Multiple Hypothesis
Tracking (MHT) [16, 24, 75, 76, 86, 91], fluid dynamics [116], and clustering [23, 129, 131]. MHT is the most
popular method which formulates group tracking as a combinational selection problem where a set of hypotheses
from the previous and current iteration of the algorithm are evaluated in order to perform data association.
Due to the computational complexity of MHT, many approaches select the k-best hypotheses [75, 76, 91]. Also,
researchers have addressed group splitting, merging, and size estimation using MHT [76, 86].

The probabilistic approach proposed by Choi et al. [24] localizes and classifies structural groups in a single image
to encode interactional features between people in groups using bottom-up interaction potentials, intragroup
potentials, and background potentials. The work done by Choi et al. relies on several features such as individual
poses (standing, sitting on an object, sitting on the floor), and 8 different viewpoints (front, front-left, back-right,
etc.). However, such features are not readily accessible for mobile robots and gaining access to these features
would greatly increase an algorithm’s complexity. For example, this method requires real-time activity recognition
(to detect individual poses) and a multi-sensor network (for multiple viewpoints). Also, the work done in [24]
does not run on sequential video data which is typically the case for perception problems on mobile robots.
Brščić et al. [16] designed a probabilistic model of spatial formations of pedestrians to predict two and three

person groups. However, in real-world settings, robots can encounter groups exceeding a membership of three,
which could lead to challenges when the robot is required to work alongside such groups.

Clustering-based methods typically consist of estimating features that characterize groups and then find
clusters within these features to detect groups. For example, Chatterjee and Steinfeld [23] estimated dense crowds
by finding clusters in 3D point clouds. They used these clusters to predict moving pedestrians in crowds.
The work done in the Spencer project has by far made the most headway in detecting and tracking groups

from an ego-centric perspective. The project’s goal is to design an assistive robotic platform that guides travelers
through busy airports [132]. As a part of this project, Linder et al. published an evaluation framework that
detects and tracks human groups [84]. Although group tracking methods are arguably more useful in practical
situations than group detectors, they depend on group detectors for accurate tracking performance. Linder et
al. [84] identified the pedestrian detector as a key component of the tracking pipeline which requires further
attention in the research community to improve tracking accuracy.
We have identified several gaps in the literature which we plan to address in our work. First, there are many

approaches that are conducted in controlled, predictable environments. This can hinder computational models as
they do not generalize to real-world environments. Thus, we collect our data in a naturalistic setting, capturing
real people in the real-world.

Additionally, unlike methods that make an underlying assumption that people in the environment are a part of
a group, we aim to detect different groups throughout the robot’s environment including people from near and
far distances. Thus, in situations where robots are working with a team, they will have the ability to detect their
team members as they move throughout the environment.
Although F-Formations are important for free-standing groups, current approaches have an underlying

limitation as it is challenging to estimate the o-space as the group moves in the environment. Additionally, most
prior work use exo-centric (i.e. birds-eye view) sensors which leads to infeasible sensing systems in everyday
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Fig. 2. Overview of RoboGEM. First, RoboGEM detects pedestrians in RGB images using an off-the-shelf detector. This
provides the bounding boxes (BB) ⟨bn,tx ,b

n,t
y ,b

n,t
w ,b

n,t
h ⟩ for pedestrians in the data, where bn,tx and bn,ty are the BB centroids,

bn,tw is the width, and bn,th is the height. In parallel, the pedestrian motion estimation module computes optical flow vectors
vt = ⟨vtx ,v

t
y ⟩ from t to t + 1. RoboGEM uses the magnitude | |v | | and orientation vtθ . Next, the group detection module

computes the mean of the depth pixels for the BB, bn,tz for each person. Then, RoboGEM concatenates the aforementioned
features into a vector f n,t . We use these features to perform hierarchical clustering to detect human groups.

environments. Alternatively, we use joint proximity and motion estimations to detect groups, as this is most
feasible in real-world environments to date. Also, we use egocentric perspective sensors so that robots are not
required to depend on external monitoring systems.

Finally, the method proposed by Linder et al. [84] is most comparable to ours and addresses some of the same
challenges. However, its main drawback is that it uses supervised learning and requires large manually labeled
datasets for training. To address this gap, we designed an unsupervised algorithm that detects human groups. To
our knowledge, this paper is the first to address unsupervised detection of human groups from the egocentric
perspective of a mobile robot.

3 ROBOT-CENTRIC GROUP ESTIMATION MODEL
The goal of RoboGEM is to enable robots to detect human groups from an egocentric perspective. We use the
definition of groups from Linder et al., [83] which states that groups are two or more people in close proximity
to one another with a common motion goal. Our method is comprised of three modules: pedestrian detection
module P , pedestrian motion estimation module V , and group detection module G (See Figure 2).
RoboGEM can be used with any standard RGB-D sensor or stereo camera as long as they provide calibrated

RGB and depth image pairs. Additionally, it was also designed for mobile robots, so it can detect groups under
stationary and mobile sensor motion scenarios. Furthermore, it does not require a priori knowledge of the robot’s
environment (e.g. indoor/outdoor, objects present, etc).
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ALGORITHM 1: Group_Detection(f n,t ,α)
Assigns group identifiers to pedestrians in RGB-D data.
Input : f is a list containing features.

α is the inconsistency coefficient.
Output :C is a list containing cluster identifiers for each pedestrian.
distt = {} // matrix of pairwise euclidean distances between observations.
Z = {} // matrix containing hierarchical clustering tree.
for t = 1 to T do

distt ← L2NORM(f n,t )
Z ← LINKAGE(distt )
C ← CLUSTER(Z ,α)

end
Return C

L2NORM(f n,t ): Returns the euclidean distance between each feature in fn,t (See Eq. 3).
LINKAGE(distt ): Returns a similarity measure between clusters in distt using average linkage (See Eq. 4).
CLUSTER(Z ): Returns group cluster identifiers for each person observed in in an image.

Our approach leverages spatiotemporal observations of people to cluster them into groups. The overall
intuition of our approach is that groups tend to walk in similar directions, with similar motion patterns, and in
close proximity to each other [84]. Using calibrated RGB-D images, RoboGEM identifies people, measures their
proximity, and determines their velocity. These features which are then used by the group detection module,
which employs agglomerative hierarchical clustering to detect groups.

We make the following assumptions: the robot is mobile and moving around in a space where n = 1, 2, 3, . . . ,N
is the number of people present at time (or frame) t , where t = {1, 2, 3, . . . ,T } for T -number of frames in a video
sequence. P generates bounding boxes (BB) at time t, bn,t = ⟨bn,tx ,b

n,t
y ,b

n,t
w ,b

n,t
h ⟩ which is the centroid column

and row, width, and height respectively.
V estimates velocity vt = ⟨vtx ,v

t
y⟩, which is a vector containing motion estimates from t to t + 1. Let the

flow vectors for bn,t be denoted vt (bn,t ). A local feature vector for an image at t for a pedestrian n is denoted
f n,t = ⟨bn,tx ,b

n,t
y ,b

n,t
w ,b

n,t
h ,b

n,t
z , | |v

t | |,vtθ ⟩, where the BB coordinates are normalized between 0 and 1, as explained
in Section 3.3. The output of RoboGEM is Cn,t ∈ RN vector which holds a group number or cluster identifiers for
bn,t .

3.1 Pedestrian Detector Module
We use an off-the-shelf pedestrian detector (YOLO) that has state-of-the-art object detection performance (81.3%
average precision) with a reasonable frame rate (40-90 frames per second on a GPU) [103, 104]. Although
RoboGEM itself is unsupervised, YOLO is deep learning-based. However, we did not train YOLO, as its pre-trained
model produced sufficient results. YOLO divides images in a grid which generates a class probability map and
bounding boxes with class confidences. Then, it performs regression on these data to infer the bounding box
coordinates.
However, during algorithm development, we found that P performs poorly with people at far distances. For

example, when people are far away from the robot, P generates a pedestrian patch that covers a wide field-of-view
around many people. Therefore, we preprocessed the pedestrian detection instances by excluding any bounding
boxes with a width ≥ w×(0.75) wherew is the total image width.
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3.2 Pedestrian Motion Estimation Module
In the next step of RoboGEM, V estimates pedestrian motion using optical flow. Optical flow is ideal for group
detection tasks, as it can provide a quantitative measure of pedestrian velocity [43].
Using this feature, we group people that walk in similar directions, including moving and stationary pedestrians.

The performance of optical flow is highly dependent on the degree of ego-motion of the sensor, as it is often
subject to large amounts of noise while the sensor is in motion. Thus, we require a method which provides dense
optical flow vectors while reducing noise.
We use FlowNet 2.0, a neural network-based optical flow algorithm which has been used for motion segmen-

tation and action recognition [58]. It uses a stacked FlowNet architecture, and incorporates image warping to
achieve smooth motion fields. This enables us to decrease the noise caused by sensor motion and better detect
people’s motion.
Given two consecutive images as input from time t to t + 1, FlowNet 2.0 computes the partial derivative of

image pixels with respect to the spatiotemporal coordinates. It generates an image representation where each
pixel is a velocity vector vt = ⟨vtx ,vty⟩. This enables RoboGEM to discern between people that are not walking in
the same direction by computing the magnitude and orientation of these vectors.

3.3 Group Detection Module
In the final step, RoboGEM performs human group detection. It computes features using joint motion and
proximity estimation. As previously mentioned, people walking in groups tend to walk in similar directions, in
close proximity, and with similar motion patterns. Additionally, we observe that people walking in groups are
walking at similar distances from the robot and therefore should have similar sized pedestrian BBs.
Given a sequence of spatiotemporal images, RoboGEM runs P . Then, it estimates flow vectors within bn,t and

stores them in vt (bn,t ). RoboGEM estimates the mean of the x and y components of the velocity vectors vtx (bn,t )
and vty (bn,t ), denoted as µx and µy respectively. The direction of pedestrian motion is estimated using Eq. 1 and
the magnitude is estimated using Eq. 2.

vtθ ← tan−1
µty

µtx
(1)

| |vt | | ←
√
(µtx )2 + (vµ

t
y )

2 (2)

µtx is the mean x component of velocity at time t .
µty is the mean y component of velocity at time t .

We perform a similar procedure on depth images to estimate proximity from the robot to pedestrians. However
in this case, we must consider which pixel values correspond to the distance from the pedestrian to the robot as
some pixels are from the background; therefore, we use the mean of the pixel values in bn,t as a distance measure.
In order to delineate between people that are close to the robot from those that are far away, we use the width
and height of the BB which are bn,tw and bn,th respectively.
The final feature is the proximity between people on the image plane. This feature uses the raw bn,tx and bn,ty

positions as they are the centroids of the pedestrian BB. Although this feature can perform poorly when one
person walks in front of another person, this feature combined with the depth feature increases the robustness of
RoboGEM. Once all features are computed, we normalize them between 0 and 1 and then concatenate all the
features into a single vector f n,t = ⟨f n,1, f n,2, . . . , f n,T ⟩.
As the overarching goal of our work is to detect human groups using methods that require no training,

RoboGEM leverages the hidden structure in data. One such method is hierarchical clustering, which discriminates
a group of objects into sets of clusters of similar likeness. Hierarchical clustering is classified into one of two
types: divisive and agglomerative.
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Divisive clustering follows a top-down approach, by first grouping all observed objects into one cluster. Then,
it iteratively divides clusters into smaller ones, until all of the objects are assigned to its own cluster, or when a
termination condition is reached. Alternatively, hierarchical clustering analysis (HCA) performs the opposite
operation by employing a bottom-up approach in an agglomerative fashion. Objects are first treated as separate
clusters, and iteratively merged until all objects are merged until a termination condition is reached.
We employ HCA because it is most suitable for our problem, as we start with atomic units which are represented

by individual pedestrian detection instances and aim to cluster them into human groups. Also, it does not require
large amounts of the data, is simple to implement, and does not require that the number of groups is defined a
priori.
RoboGEM computes the pairwise L2-norm between observations in f n,t which yields a matrix distt (See Eq. 3).

It groups distt into a binary HCA tree by linking observations with close proximity using average linkage. The
distance between two clusters L, is defined in Eq. 4.

distt ←
( f j ,t − f k ,t

)
2

(3)

L(C j ,t ,Ck ,t ) =
1

|C j ,t | |Ck ,t |

∑
f j ,t ∈C j ,t

∑
f k ,t ∈Ck ,t

dist(f j ,t , f k ,t ) (4)

where j , k
f j ,t is a feature vector for person j.
f k ,t is a feature vector for person k .

C j ,t is cluster j.
Ck ,t cluster k .

Then, it prunes the hierarchical tree to partition the observations into clusters. There are two methods for
pruning which include identifying the number of maximum clusters (similar to k-means) or by finding natural
divisions in the observations.
Due to the challenges of predicting the amount of people entering and leaving the robot’s field-of-view, we

find natural divisions in the data using an inconsistency coefficient, α which is a threshold for each link in the
hierarchical tree. It compares the height of the clusters represented in a tree with the average height in a level
within the tree. Therefore, a high α corresponds to dissimilar observations and a low α corresponds to more
similar observations. In order to choose an α that provides the best accuracy of groups, we conducted a pilot
experiment using simulated data and experimented with alpha values ranging from 0 to 4 in increments of 0.1.
We found that α = 0.1 had the best results while α ≥ 1 had the worst results. Thus, we report our findings using
α = 0.1.
Pruning the hierarchical clustering tree provides a vector Cn,t ∈ RN which holds a group number or cluster

identifiers for bn,t . Then, we perform pruning on the clusters to detect groups. For example, suppose Cn,t =

⟨1, 2, 2, 3⟩. Pedestrian at index 0 has a group identifier of 1. Pedestrian at index 1 has a group identifier of 2.
Pedestrian at index 2 has a group identifier of 2 and the pedestrian at index 3 has a group identifier of 3. Therefore,
pedestrian at index 1 and 2 are in a group because they have the same group identifier. In this case, we must remove
clusters with a f requency < 2; therefore, the resulting Cn,t = ⟨2, 2⟩. To accomplish this, we use the frequency of
unique identifiers in Cn,t and remove pedestrians from Cn,t that have identifier with a f requency < 2 as groups
are two or more people. Then, we compute the merged BB of groups, denoted asM . The final representation of
groups includes the groups’ BB and their group identifier.
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4 EXPERIMENTS

4.1 Data Collection
To evaluate RoboGEM, we required a pedestrian dataset consisting of spatiotemporal RGB-D images captured
from an egocentric viewpoint of a mobile robot. Furthermore, we were interested in evaluating our algorithm
on data that consisted of candid human groups. While many ego-centric pedestrian datasets exist (c.f. Caltech
[36], INRIA [31], Daimler [41]), they do not work for our intended purpose because they do not simultaneously
contain depth information and egocentric motion. Moreover, previous datasets are often captured in spaces where
social gatherings of pedestrians are sparse. Also, other datasets such as UT Interaction [111], Collective Activity
[26], Collective Activity Extended [34], Volleyball Activity [57], Nursing Home [35] are not adequate for our
evaluation because they do not contain group annotations. There are many publicly group detection datasets
(i.e., Crowds-By-Example [80] and BIWI Walking pedestrians [98]); however, these are datasets captured from a
stationary, exo-centric perspective which is not representative of robot vision, they do not contain depth data,
and the pedestrians are represented as a point instead of a bounding box as done in RoboGEM. To the best of our
knowledge, there is one publicly available egocentric group detection dataset, Structural Groups [24]; however, it
does not contain depth data and spatiotemporal observations of groups.
Instead, we sought to evaluate RoboGEM on a dataset that encompasses real-world challenges which robots

might encounter when operating in public, crowded spaces. Thus, we acquired a challenging real-world dataset
that was captured “in-the-wild”; therefore, we had no control over what people did or how they behaved, which is
important for robots working in everyday settings. Some challenges which appear in our dataset include: variable
lighting, occlusion, chaotic motion trajectories, and motion blur. These challenges provide a useful benchmark,
because a robot might be expected to work in both indoor and outdoor environments, where lighting conditions
can change dynamically as the robot navigates from one position to another. Furthermore, a robot’s vision can be
suddenly occluded or blurred, where the robot needs to estimate the state of its surroundings. Most importantly,
we are interested in challenges involving a mobile robot navigating around groups of pedestrians, which are
highly unpredictable.
Thus, we collected our own RGB-D pedestrian dataset. We mounted a ZED stereo camera at human height on a

Double Telepresence Robot (See Fig. 1). The ZED was configured to capture video at approximately 20 frames per
second, at a resolution of 640×360. The robot collected data while being teleoperated using the Double mobile
application. Consistent with other popular robot vision datasets [5, 74], we acquired our data in discontinuous
segments to capture a wide range of real-world conditions. The collection site consisted of a large, outdoor
public park across several different locations to diversify lighting conditions, degree of crowdedness, and to
capture varied motion patterns. The robot roamed around the park moving through corridors, on sidewalks, and
through large crowds during the daytime where people were observed walking, eating, and viewing local nearby
landmarks.
In total, our dataset consists of 16,827 RGB-D images, representing 1.5 hours of video. The total number of

groups between frames in our dataset is 5,423 (not unique groups). A member of our team labeled 14,710 images
with bounding boxes around groups. In order to detect groups, we adopt the definition of groups used by Linder
et al. [83]. This definition states that groups are two or more people in close proximity to each other with a
common motion goal.
In order to validate our labels, a second member of our team labeled 2,000 randomly selected images from our

dataset. We employed a validation method in concert with other leading methods in the field (e.g. the COCO
dataset [82]). We computed the precision and recall of both team members’ labels which is comparable to COCO’s
expert [82]. The precision is 0.83 and the recall is 0.79 at an Intersection-over-Union (IoU) of 0.4, where IoU
is a ratio that measures the overlap of a predicted box and a groundtruth box (See Section 4.2 for a detailed
discussion).
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4.2 Experimental Setup
We evaluate RoboGEM by comparing it to three methods: (1) an extension of RoboGEM(RoboGEM:HC+LDA-L1,
(2) Spencer’s group detector (Spencer:SVM) [83], and (3) the group detection method developed by Solera et al.
(Solera:G-MITRE) [121].
Experiments were conducted on a Dell Inspiron Intel Core i7 laptop, with 16 GB of RAM, 1 TB HDD, with

a NVIDIA GeForce GTX960M GPU. The machine ran Ubuntu 14.04 Linux and all algorithm development was
completed in MATLAB.
We performed two steps to ensure a consistent evaluation among all methods. First, we generated pedestrian

bounding boxes using the same pedestrian detector for all methods, YOLO [104, 105]. Second, we merged the
pedestrian bounding boxes to form group bounding boxes. Then, we followed the evaluation protocol described
in Section 4.3.

4.2.1 Comparison to RoboGEM extension (RoboGEM:HC+LDA-L1). To create the first comparator method, we
extend upon RoboGEM, by using a post-processing method, Linear Discriminant Analysis based on L1-norm
maximization (LDA-L1). We choose this method for comparison because it minimizes the within-cluster dispersion
of groups, while also maximizing the between-cluster dispersion of groups to improve clustering performance;
therefore, in situations when RoboGEM did not perform well, we expect LDA-L1 to improve its performance.
First, RoboGEM is used to estimate groups, then LDA-L1 is applied. This yields local optimal projection

vectors for groups [147]. The goal of traditional LDA is to reduce feature dimensionality by learning a set of
projection vectorsW = [w1,w2, . . . ,wn] ∈ R

k (k < N ) that constitute a low-dimensionality linear subspace.
Unlike traditional LDA, LDA-L1 is more robust to outliers and uses a greedy search method to obtain N − 1 local
optimal projection vectors. To summarize, we address the following optimization problem using notation that is
consistent with [147]:

w∗ = argmax
w

F (w) subject towTw = 1 (5)

where F (w) is the objective function as follows:

F (w) =

∑C
i=1 Ni

wT (x i − x)

1∑C

i=1
∑

j ∈Ci

wT (x j − x i )

1

(6)

w∗ is one projection vector which is the local optimal solution of F.
w is the columns ofW .

x i is the ith group mean vector.
x is the global mean (i.e. mean of all features) vector of f t .

x j is the sample vector projected onW .
C is the number of groups.

Ci is the ith member of a group.
We useW to project the features f t onto a linear subspace and find the hierarchical clusters of these projected

features. We refer readers to Zhong and Zhang’s work [147] for a detailed description of the LDA-L1 method and
for a proof of convergence.

4.2.2 Comparison to Spencer Group Detector (Spencer:SVM). Second, we compared RoboGEM to the state-of-
the-art supervised group detection method used in the Spencer project [8, 84, 86, 132]. The system pipeline of
this approach includes pedestrian detection, group detection, and group tracking. Although the Spencer pipeline
includes group tracking functionality, to facilitate a fair comparison we only used its group detection method
in our evaluation. This represents an important test, however, as the detector’s performance greatly impacts
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how well the group tracker performs. Additionally, to our knowledge, this is the most comparable method in
the literature, and shares our definition of groups (a collective of individuals in close proximity with a common
motion goal [83]).
This approach uses RGB-D data and 2D laser scanner data to compute velocity, euclidean distance, and

orientation features. In contrast to our method, this approach uses supervised learning to detect groups. In
addition, our dataset did not contain 2D laser scans; therefore, to make a fair comparison to RoboGEM, we
re-implemented Spencer to accept depth images. We used the same pedestrian detector that is used in RoboGEM
to detect pedestrians [103]. Then, we use optical flow to estimate velocity and orientation. Following the approach
used by Linder et al. [83], we compute the pairwise difference in bounding box x position, bounding box y
position, velocity, and orientation between all pedestrians. Then, we trained an SVM to learn a pairwise social
relation between all pedestrians on our dataset using the aforementioned features. This generates a social relation
score between 0 and 1. Then, we constructed a social network graph where each node is a pedestrian and the
edges are weighted by the pedestrians social relation score. Similar to [83], we disregard edges with a score less
then 0.5. Finally, we compute connected components in the graph to detect groups using the Depth First Search
algorithm.

4.2.3 Comparison to Solera (Solera:G-MITRE). Finally, we compared RoboGEM to the group detection method
by Solera et al. [121]. This method employs correlation clustering and a structured SVM. They propose a loss
function that models clustering constraints for crowds of people. Because this method models large crowds, it
becomes computationally expensive; therefore, the authors use a spanning tree representation in their G-MITRE
loss function and then find the connected components in these graphs to detect groups.
To evaluate Solera on our dataset, we needed to transform our data into a format compatible with their

codebase1. The method requires a unique pedestrian ID for all people in our dataset, so we first ran a pedestrian
detector (YOLO) to generate pedestrian bounding boxes. Then, we ran a pedestrian tracker [139] to generate
pedestrian IDs. Next, we generated a clusters file where each line contains the pedestrian IDs for a group. Also,
we generated a trajetories file that contains the frameID, pedestrian ID, x, and y coordinates indicating where
each pedestrian is located in a image. Finally, we converted our bounding boxes to a single point on the ground
plane, which is located at the bottom center of the bounding boxes.
To keep our data consistent with the dataset used by Solera et al. (Crowds-By-Example) [80], and match their

system’s expectations, we normalized the x and y coordinates in our dataset to match the scale of the x and y
coordinates in their dataset.
We inputted the cluster and trajectory files into Solera, which generated group clusters where each group is

represented by a set of pedestrian IDs. 2

4.3 Evaluation Metrics
We measure group detection performance using three metrics: (1) accuracy versus Intersection-over-Union
(IoU), (2) log-average miss rate versus false positives per image (FPPI), and (3) accuracy versus depth threshold
[20, 103, 106]. We use these metrics because they evaluate our method’s accuracy and how the accuracy is affected
by the detection distance range. For example, pedestrians that are far away from the robot have small bounding
boxes which have high false positive rates. Therefore, we conducted experiments to investigate the impact of
detection range on group detection performance.

1http://imagelab.ing.unimore.it/group-detection/
2One aspect of the code that we modified was the maximum number of iterations for convergence which was originally set to 300; however,
we changed this parameter to 700 because we found that any number of iterations less than 700 did not generate groups.
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Method
Accuracy ↑
(IoU = 0.4,
Depth = 0.0)

Accuracy ↑
(IoU = 0.4,
Depth = 0.4)

Precision ↑
(IoU = 0.4,
Depth = 0.0)

Recall ↑
(IoU = 0.4,
Depth = 0.0)

Spencer:SVM 0.27 0.40 0.34 0.16
Solera:G-MITRE 0.07 0.07 0.11 0.04

RoboGEM:HC+LDA-L1 0.36 0.45 0.33 0.24
RoboGEM:HC 0.37 0.45 0.34 0.24

Table 1. The results with an IoU threshold of 0.4 on our dataset. We measure accuracy at depth thresholds of 0 and 0.4.
Precision and recall are measured with a depth threshold of 0, which includes all pedestrians, regardless of distance and is
thus most reflective of our algorithm’s overall clustering performance. For all metrics, higher is better.

4.3.1 Accuracy vs. Intersection of Union. In the first experiment, IoU measures how closely RoboGEM matches
the ground truth, or how well it was able to match the performance of human annotators (See Eq. 7) [36].

B ∩GT

B ∪GT
≥ δ

0 ≤ δ ≤ 1
(7)

B is a rectangular bounding box predicted by a detector.
GT is a ground truth rectangular bounding box.

δ is the IoU threshold.
We predict paired BB from GT to B using the Jonker-Volgenant algorithm [64]. This is a greedy algorithm that

is used to search for the best matching pair of ground truth and experimental BB which yield the highest IoU
score.

ACC =
TP +TN

TP +TN + FP + FN
(8)

ACC is the accuracy.
TP is the total number of true positives.
TN is the total number of true negatives.
FP is the total number of false positives.
FN is the total number of false negatives.

This enables us to apply a threshold δ to IoU in order to ensure a fair assessment of the overlap between the
predicted and ground truth BB. A true positive, TP , corresponds to a detection with an IoU that does not exceed
δ . Otherwise, the detection is considered a false positive, FP .
When the ground truth does not contain a bounding box and RoboGEM does not detect a group in the same

area, this represents a true negative, TN . IoU is normalized between values of 0 and 1, and is characterized by
two extremes. For instance, an IoU value of 0 equates to zero percent overlap between the algorithm’s predicted
bounding box and the ground truth bounding box. In the opposite extreme, an IoU value of 1 equates to perfect
overlap between the algorithm’s predicted box, and that of the ground truth. In order to evaluate a correct
detection we use the IoU value as a threshold. For example, if the IoU is set to 1, only predicted boxes that have
perfect overlap with the ground truth is considered a correct detection. However, in the context of pedestrian
detection, people are often treated as non-rigid or deformable objects, where an IoU ≥ 0.4 is the standard value
for a predicted box to be considered a correct detection [36].
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Fig. 3. Results of Spencer:SVM, Solera:G-MITRE, RoboGEM:HC, and RoboGEM:HC+LDA-L1: Accuracy vs. IoU (higher is
better), Log-Average Miss Rate vs. FPPI (lower is better), and Accuracy at Fixed IoU = 4 vs. Depth Threshold (higher is better).

4.3.2 Log-Average Miss Rate vs. False Positives-Per-Image. The second metric that we use in our evaluation is
log-average miss rate versus false positives per image (FPPI). This metric is similar to average precision, but is a
more stable and informative assessment of performance [36]. It is computed by averaging the miss rate at nine
FPPI rates evenly spaced in log space [36]. Hence, lower curves indicate better performance.

4.3.3 Accuracy vs. Depth Threshold. The third evaluation metric is accuracy versus depth threshold. As
pedestrians move further from the robot, it becomes challenging to detect them. For instance, Linder et al.
[83] ignored detection instances greater than 12 meters due to annotation challenges, extreme occlusions, and
increased inaccuracy of sensor calibration. Therefore, we conducted experiments to evaluate the accuracy of
RoboGEM at various depth thresholds for a fixed IoU of 0.4, or the standard criterion used in pedestrian detection.
We normalized the depth maps between 0 and 1 on a per-image basis and applied depth thresholds from 0

to 0.40 (about 8 meters) in 0.05 increments to the depth map. This gives us a comparable distance threshold to
Linder et al. [83] at about 10 meters (the ZED depth range is from 0.5 - 20 meters). We use these depth thresholds
because they range from using all of the bounding box data to a strict selection of pedestrians which are close to
the robot. If the mean of the depth map within bz ≥ threshold , we consider these pedestrian detection instances
in our algorithm; otherwise, we do not consider the pedestrian detection.

4.4 Results
Figure 3 presents our results, which compares the three comparator methods against RoboGEM. Figure 3 (left)
shows accuracy at various IoU thresholds within the range of 0.4 and 1, where higher is better. As expected, the
performance of all the methods degrade as IoU increases, because the overlap criterion becomes more strict.
Our results show that RoboGEM outperforms Spencer:SVM [8, 84, 86] and RoboGEM:HC+LDA-L1 in detection
accuracy by 10% and 1%, respectively. Also, Spencer:SVM outperforms Solera:G-MITRE by 20%. This suggests
that both versions of RoboGEM are superior to both Spencer [84] and Solera [121].
Figure 3 (center) shows results for log-average miss rate with varying FPPI where lower is better. RoboGEM:HC

and RoboGEM:HC+LDA-L1 have similar miss rate performance, and they both outperform Spencer:SVM. Robo-
GEM:HC, RoboGEM:HC+LDA-L1, and Spencer:SVM have comparable precision. This indicates that there is a high
false positive rate, consistent with the findings in Linder et al. [84]. RoboGEM:HC and RoboGEM:HC+LDA-L1
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have similar recall performance, both outperforming Spencer:SVM and Solera:G-MITRE. This suggests that
RoboGEM is 50% better at recalling groups when compared to Spencer:SVM and Solera.
Figure 3 (right) shows accuracy results at a fixed IoU threshold of 0.4, with varying depth thresholds from

0 to 0.4 in increments of 0.05 where higher numbers are better. In general, as the depth threshold increases
to 0.4 (about 10 meters), the performance of all methods improve; RoboGEM:HC and RoboGEM:HC+LDA-L1
outperforms Spencer:SVM and Solera:G-MITRE. Additionally, Solera:G-MITRE does not rely on depth data.
As a result, its performance is constant at an accuracy of 0.07 while RoboGEM:HC, RoboGEM:HC+LDA1, and
Spencer:SVM accuracies increase as the depth threshold increases.

5 DISCUSSION
In this paper, we introduced RoboGEM, an unsupervised robot-centric human group detection algorithm. Our
method outperformed two state-of-the-art supervised methods, Spencer [83], by 10% and Solera [121] by 30%.
Furthermore, RoboGEM is 50% better at recalling groups than Spencer, and substantially better at recalling groups
than Solera. All of the methods presented have a low precision rate (high false positive rate), which is consistent
with the findings presented by Linder et al. [84]. Therefore, RoboGEM has a comparable precision rate to the
state-of-the-art. Also, as the depth threshold increases to 0.4, our method performed with an overall higher
accuracy.
In contrast to related work, which use fixed sensors and/or supervised learning, our work explores how

unsupervised methods can be used to address challenging problems in noisy environments. Although our
implementation used stereo images, our approach is generalizable to other RGB-D sensors, as well as in indoor
and outdoor settings. RoboGEM is simple to implement and was developed for robot-vision in real-world
environments. Furthermore, our contributions include the following: an unsupervised group detection algorithm,
an evaluation of our approach on an egocentric real-world dataset, where both pedestrians and the robot were in
motion at the same time, and we showed that our method outperforms two top-performing algorithms.
Our work has several implications for the HRI community. It shows that unsupervised group detection methods

have the potential to outperform supervised methods using noisy, real-world data. This work can help encourage
others to investigate human-robot teaming in real-world environments rather than exploring problems in well-
controlled spaces. For instance, our method can be used in healthcare settings where robots are responsible for
working with clinicians to care for patients [109, 128]. This can help the robot understand how it can appropriately
enter and exit team interactions.
In addition, our method can be used when a robot needs to help a group complete a collaborative task. This task

might consist of coordinating with a team in which our method is used to detect where the robot’s team members
move over time. It can be used in conjunction with group activity recognition methods [4, 9, 25, 27, 34, 118]. Also,
RoboGEM can be incorporated into existing pipelines, like the Spencer project [132], to improve group detection
performance. Furthermore, our method can be used in autonomous driving systems to give them a high-level
understanding of group motion on the road.
Recently, researchers have used deep learning to address vision problems such as pedestrian detection [104].

Such approaches are beneficial because they can learn on large datasets. However, training for long periods of
time to achieve improved accuracy remains a challenge. As a result, there is a tradeoff between our approach,
which uses hand engineered features to detect groups without training, and those that are more data-driven and
require training on large datasets. As such, there are exciting opportunities to apply deep learning to the group
detection problem, which may result in improved group detection.
As robots become more integrated into our daily lives, they are expected to work alongside groups of people

in teams. However, when robots cannot effectively detect its team members, it can potentially cause confusion
among the team and teams working in close proximity to it. As a result, this situation can negatively impact
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Fig. 4. Examples of successful group detections. The green and blue boxes show the ground truth and predicted labels
respectively.

a robot’s performance in a team. As a result, robot group detection algorithms that perform poorly can cause
people to lose trust in the robot which is an important area of research [53, 87]. Alternatively, a robot with more
accurate group detection algorithms can work alongside its team more fluently because the interaction is not
negatively impacted by poor robot perception. Robots can effectively detect their team members and coordinate
their actions with the team to accomplish their shared goals. This can preserve trust in human-robot teams and
can potentially increase trust between humans and robots.
In the future, we look forward to improving RoboGEM in order to investigate collective group motion. To

approach this direction of exploration, we plan to use probabilistic reasoning to detect and track people over time.
Furthermore, we will incorporate odometry data to be used in a motion model to reason about a pedestrian’s
movement relative to the robot’s movement. We are also considering using more accurate sensors, such as LIDAR,
for more precise motion estimation as our observation aligns with [84] that the depth measurements are often
imprecise. For example, this alternative sensor may be better to cover farther ranges. Finally, we plan to use
this extension to investigate how robots can use this knowledge to interact and work in teams with groups.
Additionally, prior work has shown great potential in group activity recognition; therefore, combining group
detection with group activity recognition is another exciting area of future exploration [4, 9, 25, 27, 34, 118].
Group detection is an important problem in robotics and requires further attention in order to improve group

tracking performance. Also, by designing more accurate group perception methods, robots can better predict
pedestrians motion intentions. This can enable robots to employ safer and more socially aware navigation in
crowded environments. By incorporating egocentric vision and unsupervised learning in our algorithmic design,
we hope that our method can be easily used in other robotics problems such as navigation, human-robot teaming,
and coordination.
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